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[1] A characteristic feature of rainfall statistics is that they depend on the space and time
scales over which rain data are averaged. A previously developed spectral model of rain
statistics that is designed to capture this property predicts power law scaling behavior
for the second moment statistics of area-averaged rain rate on the averaging length scale L
as L ! 0. In the present work a more efficient method of estimating the model parameters
is presented and used to fit the model to the statistics of area-averaged rain rate derived
from gridded radar precipitation data from TOGA-COARE. Statistical properties of the
data and the model predictions are compared over a wide range of averaging scales. An
extension of the spectral model scaling relations to describe the dependence of the average
fraction of grid boxes within an area containing nonzero rain (the ‘‘rainy area fraction’’) on
the grid scale L is also explored. INDEX TERMS: 1854 Hydrology: Precipitation (3354); 1869
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1. Introduction

[2] Rainfall is a complex phenomenon involving the
interplay of many physical processes in the atmosphere.
Consequently, one often has to resort to a probabilistic
description of the overall space-time distribution of precip-
itation rather than a detailed physical model of the under-
lying processes. In contrast to physical models, statistical
models have the advantage of being conceptually econom-
ical in the sense that they generally involve fewer adjustable
parameters. Moreover, they can be easily validated by
comparing against data gathered over a large area and a
large time period representative of a certain climatological
regime. Once the model parameters are determined from a
sufficiently large data set, the model provides an efficient
method of describing various statistical properties of rainfall
over areas with similar rain climatologies [see, e.g., Bell et
al., 2001] (hereinafter referred to as BKK).
[3] Rainfall, despite its apparently irregular nature, is

correlated both in space and in time. Spatiotemporal vari-
ability of rain directly influences other hydrological pro-
cesses, such as soil moisture transport and surface runoff.
Statistical behavior of area- and/or time-averaged rain rate at
different length and time scales can be an important diag-
nostic for comparing actual rain behavior with predictions
from global climate models. It has important consequences
for the estimation of the so-called sampling error that arises
in satellite measurements because of their intermittent and

often incomplete coverage of a given area of the globe
[McConnell and North, 1987; Bell et al., 1990; Bell and
Kundu, 1996] (Bell and Kundu is hereinafter referred to as
BK96).
[4] In this paper we present a statistical model of space-

time variability of rainfall in the mesoscale regime derived
from ground-based radar observations. In this model, Four-
ier modes of the rain intensity R(x, t) are treated as a set of
random variables whose evolution is governed by a linear
stochastic equation driven by a white noise source. This
equation immediately leads to an analytical form of the
rainfall power spectrum depending on just a few adjustable
parameters. The Fourier transform of the spectrum yields
the space-time covariance function of the point rain rate
field, namely

c x; t; x0; t0ð Þ ¼ R0 x; tð ÞR0 x0; t0ð Þh i ð1Þ

with

R0 x; tð Þ ¼ R x; tð Þ � R x; tð Þh i; ð2Þ

and determines how rain statistics depend on the averaging
length and time scales. Here the angle brackets represent a
statistical average over a hypothetical collection or
ensemble of rain fields with similar rain climatology. The
model was used previously in BK96 in a study of the
sampling error in preparation for the Tropical Rainfall
Measuring Mission (TRMM), where it was quite successful
in describing the Global Atmospheric Research Program
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(GARP) Atlantic Tropical Experiment (GATE) phase I data.
Here we test it with a gridded precipitation data set
constructed from the radar images obtained during the
Tropical Ocean Global Atmosphere-Coupled Ocean Atmo-
sphere Response Experiment (TOGA-COARE) [Webster
and Lukas, 1992]. This data set covers a longer period of
observation than the GATE data set and has a finer spatial
resolution. Since the data set provides ‘‘instantaneous’’
spatial averages on a regular rectangular cartesian grid
analogous to the GATE data, it is well suited to studying the
statistical behavior of the rain field averaged over various
spatial scales. A parameter estimation method is described
in this paper that utilizes the analytical behavior of the
model and is much more convenient and robust than the
method used in BK96 which involved considerable amounts
of trial and error.
[5] There exists a large class of physical rainfall models

based on random processes that may be called hierarchical
cluster models. These models attempt to capture the spatial
and temporal organization of storm systems that cause
precipitation. A general mathematical framework for such
models was laid by Le Cam [1961] in which stochastic
Poisson processes with suitably randomized parameters are
used to describe the irregular occurrence of rain events in
space and time. There is an extensive literature on this type
of model [e.g., Gupta and Waymire, 1979; Cox and Isham,
1988; Smith and Krajewski, 1987; Waymire et al., 1984].
However, these models generally involve a large number of
parameters whose estimation from actual rain data presents
a difficult problem. For a recent account of a number of
models in this category, including the problem of parameter
estimation in the context of a precipitation data set obtained
in the United Kingdom from the HYREX project, a large
network of radar and rain gauges, see Wheater et al. [2000].
Because of the ease of parameter estimation for real rain
data sets, combined with its ability to capture the variability
on many different space and time scales, we chose to
consider a rainfall model based on a simple stochastic
dynamical equation rather than a cluster model of the type
described above.
[6] Other stochastic dynamical rainfall models exist in the

literature [North and Nakamoto, 1989; Yoo et al., 1996]
which also describe the GATE spectrum with varying
degrees of success. Of these the North-Nakamoto (NN)
forced diffusion model is a special case of the model
considered here. It describes precipitation as the diffusive
spreading of rain events through a turbulent atmosphere.
The Yoo-Valdés-North (YVN) model adds a second time
derivative term which may help in modeling the high
frequency behavior of the rainfall spectrum. However, the
model has more parameters and has so far been applied only
in the low wave number regime, and it is not yet clear how
well the model describes rainfall statistics at the smaller
spatial scales considered in this paper.
[7] The present model is an outgrowth of previous work

by Bell [1987] and Bell et al. [1990] who constructed a
model to simulate the statistics of the gridded rainfall data
from GATE. They introduced a Gaussian random field on a
discrete 4 km grid whose Fourier amplitudes were assumed
to obey a stochastic dynamical equation similar to the one
used here. A nonlinear mapping was used to generate the
gridded rain rate field with a rain rate probability distribu-

tion matching the observed lognormal distribution. Unlike
that work, the present model directly describes the stochas-
tic evolution of the point rain rate field, which can be
averaged to any desired length and time scale. Moreover, it
yields the full space-time covariance function in terms of a
small number of model parameters. Once they are deter-
mined from data, the model allows us to relate statistics at
different scales, whereas the original model of Bell [1987]
was applicable only to a single spatial grid scale and,
moreover, the form of the spatial covariance function was
specified as an explicit function of spatial separation, in
effect increasing the number of empirical parameters. How-
ever the present model pays a price for its simplicity in
being restricted to describing only the second moment
statistics of rain.
[8] Our model spectrum naturally leads to power law

scaling behavior of the rain statistics at small spatial scales
suggesting an underlying fractal or multifractal structure of
the rain field. Multifractal rainfall models have been pro-
posed by Schertzer and Lovejoy [1987] and Gupta and
Waymire [1990] extending earlier ideas of Lovejoy [1982],
Lovejoy and Mandelbrot [1985], and Waymire [1985].
These models describe the moments of a spatially averaged
rain field in terms of multifractals generated by an under-
lying self-similar multiplicative random cascade process
[Marshak et al., 1994; Menabde et al., 1997]. The notion
that the rain field is scale invariant over a broad range of
spatial and temporal scales is inspired by statistical theory of
turbulence and is supported by a growing body of empirical
evidence [Foufoula-Georgiou and Krajewski, 1995]. An
intriguing feature of the multiplicative cascade models is
that they naturally lead to a lognormally distributed precip-
itation field. More recently, the spatial cascade models have
been extended to space-time models which incorporate
dynamics in the scaling regime, either through a combined
scaling of the space and time variables [Marsan et al., 1996]
or through a description of the time evolution of the cascade
generators in terms of an autoregressive process [Over and
Gupta, 1996; Seed et al., 1999]. The multifractal approach
has been applied by Deidda [2000] to the GATE data to
disaggregate the large scale rain and compare the observed
and synthetically downscaled rain statistics at smaller
scales. Empirical evidence of scaling under a combined
space-time scale transformation (‘‘dynamical scaling’’) has
been presented by Venugopal et al. [1999]. A review of the
multifractal cascade dynamics models is given by Schertzer
et al. [1997].
[9] The paper is organized as follows: Section 2 describes

the rainfall model. Here we collect a number of mathemat-
ical formulae related to the statistics of area-averaged rain
rate fields that are useful for fitting the model to data. Of
particular interest to us is the way these statistics depend on
the averaging length scale. Readers who are mainly inter-
ested in the applications of the model to data may wish to
omit the theoretical details of the model and proceed to
section 3 where we describe the gridded TOGA-COARE
precipitation data set and the procedure for fitting the model
to data and estimating the model parameters, returning later
to section 2 for the main formulae as needed. Section 4 is
devoted to a discussion of the results, focusing in particular
on the scaling behavior of rain statistics at small spatial
scales perhaps associated with fractal nature of the rain rate
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field. Some concluding remarks and directions for future
work are presented in the final section. Three appendices
provide mathematical details of the derivation of a number
of results utilized in the main text.

2. Modeling Rainfall Variability

2.1. A Spectral Model of Rain Rate Covariance

[10] In this subsection we give a brief account of the
model. A set of results that are needed in fitting the model to
data and checking some of its predictions are derived here.
The underlying assumptions of the model as well as many
of its salient features have already been described in detail
in BK96.
2.1.1. Model Basics
[11] As was emphasized by Bell [1987] and Bell et al.

[1990], rain rate fields share with turbulent fluids the
characteristic feature that the timescale over which spatial
averages remain correlated depends on the size of the
averaging area: the larger the averaging area, the longer
the time over which the average rain rate remains correlated.
This behavior must be captured by a realistic model of
rainfall statistics. Although local rain statistics are expected
to be affected by inhomogeneous and nonstationary direc-
tional effects such as occur, for instance, in rainbands, the
model applications we envisage require a description that is
valid over a large enough region and sufficiently long time
for such directional effects to average out, so that the rain
statistics can be treated to a good approximation as spatially
homogeneous and isotropic and stationary in time. These
assumptions imply that the space-time covariance function
of the rain field at the points x, x0 and times t, t0 has the form

c x; t; x0; t0ð Þ ¼ c R; tð Þ ¼ c r; tð Þ

where t = t0 � t, R = x0 � x and r = jRj. It can be expressed
as a Fourier integral

c r; tð Þ ¼ 1

ð2pÞ3=2

Z 1

�1
dw

Z
d2kei k�R�wtð Þ ~c k;wð Þ; ð3Þ

where ~c(k, w) represents the (unnormalized) rain rate power
spectrum. Isotropy implies ~c(k, w) = ~c(k, w) where k = jkj.
The spatial Fourier amplitudes

a k; tð Þ ¼ 1

2p

Z
d2x e�ik�xR0 x; tð Þ

of the rain field fluctuation R0(x, t) defined by equation (2)
are assumed to obey the first order linear stochastic equation

@

@t
a k; tð Þ ¼ � 1

tk
a k; tð Þ þ f k; tð Þ: ð4Þ

(A more general possibility is an equation of the form

@

@t
a k; tð Þ ¼ �

Z
d2k0 1

tkk 0
a k0; tð Þ þ f k; tð Þ;

which allows coupling among different Fourier modes. One
could add a term (ik.v)a(k, t) to equation (4) to take into
account the effect of advection, at the expense of isotropy.)
Equation (4) represents what is sometimes referred to as a
first order autoregressive [AR(1)] process [Jenkins and

Watts, 1968]. It is formally analogous to the familiar
Langevin equation for the velocity of a particle executing
thermal Brownian motion in a viscous fluid. Here f (k, t) is a
white noise force satisfying

f k; tð Þf ? k0; t0ð Þh i ¼ 2pð ÞF0 d k0 � kð Þ d t0 � tð Þ; ð5Þ

where in the right hand side we have introduced the Dirac
d-function, and the asterisk denotes complex conjugation. In
equation (4) tk represents the characteristic relaxation time
of a(k, t). As in BK96, it is assumed to have the form

tk ¼
t0

1þ k2L20
� �1þn ; ð6Þ

where t0 and L0 are characteristic time and length scales.
The length scale L0 effectively separates the long and the
short wavelength regimes of the spatial fluctuations of the
rain rate field. As a consequence of equations (4) and (5)
the power spectrum has the typical ‘‘red noise’’ form

~c k;wð Þ ¼ F0

w2 þ t�2
k

: ð7Þ

The analytic form of tk in (6) is suggested by the form chosen
by Bell [1987] and Bell et al. [1990] who, in turn, were
motivated by the empirical results of Laughlin [1981] from
GATE data. As already noted, it contains the North-Naka-
moto model as a special case with n = 0. It may be pointed out
that in the original work of Bell [1987] and Bell et al. [1990],
the form of the spatial covariance function was separately
introduced from an empirical fit, whereas in the presentmodel
it is implicitly contained in the analytic form of tk.
[12] Because of the fractional exponent n, the implied

stochastic dynamical equation governing the evolution of
the rain rate field R(x, t) now takes the form of an integro-
differential equation with an associated nonlocal character
rather than a pure differential equation as in the case of NN
and YVN models. It can also be formally expressed in terms
of fractional order derivatives [see, e.g., Benson et al., 2000].
Physically it can be thought of as representing a generalized
diffusion process by which rain moves through a turbulent
atmosphere. In particular, the negative values of n required to
fit the data sets studied here appear to better describe the high
variability of rain rates at small spatial scales, an important
factor in extrapolating statistics to rain gauge scales.
[13] The four model parameters F0, t0, L0 and n character-

ize the second moment statistics. No specific assumption
about the actual probability distribution for the random
variable R(x, t) is introduced here. It should be noted however
that the model of rain statistics remains incomplete without
such an assumption, since the higher order moments cannot
be represented within the model. Observationally, area aver-
aged rain rates seems to be approximately lognormally or
gamma distributed, at least on smaller space and time scales.
2.1.2. Spatial Covariance Function
[14] Substituting the explicit form of the model spectrum

in (3) and performing the integral over w and the angular
integral in the k-plane yields

c R; tð Þ ¼
Z 1

0

dk kJ0 krð Þc k; tð Þ; ð8Þ
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where J0(x) is the Bessel function of order zero, and

c k; tð Þ ¼
ffiffiffiffiffiffiffiffi
p=2

p
F0tke� tj j=tk ð9Þ

represents the lagged covariance of a(k, t) defined by the
equation

a k; tð Þa? k0; t0ð Þh i ¼ 2pð Þc k; tð Þ d k0 � kð Þ; ð10Þ

and is the inverse temporal Fourier transform of ~c(k, w). At
zero lag (t = 0), carrying out the remaining k-integration in
(8), the spatial covariance of the point rain rate can be
expressed in the simple closed form

c r; t ¼ 0ð Þ ¼ g0Cn r=L0ð Þ; ð11Þ

where, for convenience, g0 is defined by the relation

F0 ¼
ffiffiffiffiffiffiffiffi
2=p

p
� 1þ nð Þ L20=t0

� �
g0; ð12Þ

�(z) =
R1
0

t z�1e�tdt is the Euler �-function, and

Cn zð Þ ¼ z=2ð ÞnKn zð Þ ð13Þ

is a function related to the modified Bessel function Kn(z).
For z  1, Cn(z) has the behavior

Cn zð Þ ¼ 1

2
� nð Þ þ 1

2
� �nð Þ z

2

� �2n
þO z2þ2n� �

þ O z2
� �

: ð14Þ

For n > 0, the first term dominates and Cn(z) ! 1
2
�(n) as

z ! 0, and the variance of the point rain rate c(0, 0) =
1
2
g0�(n) is finite. However, as we shall see, like the GATE

data, the TOGA-COARE data requires n < 0, and the
covariance function exhibits a power law singularity

c R; 0ð Þ � 1

2
g0� nj jð Þ r=2L0ð Þ�2 nj j ð15Þ

as the separation r ! 0. This remarkable singular behavior
can be traced to the k-dependence of the characteristic
timescale tk governing the decay rate of the Fourier mode
a(k, t): For the long wavelength modes (k � 0) tk
approaches a constant value t0, whereas for the short
wavelength modes (k � 1/L0) tk behaves like k�2(1�jnj).
Note that for values of the exponent n in the range�1 < n < 0
(as seems to be the case for both GATE and TOGA-
COARE data sets), tk ! 0 as k ! 1. For the NN model
(n = 0) the singularity in c(R, 0) weakens to become
logarithmic.
[15] Although the point variance is infinite in the model,

this is not necessarily inconsistent with experience since
observations always involve smoothing of the point rain rate
field in space and/or time, and variances of smoothed rain
field are finite in the model.
2.1.3. Statistics of Area-Averaged Rain Fields
[16] Next, we turn to the space-time covariance function

of rain rate averaged over a square area A = L2,

RA tð Þ ¼ 1

A

Z
A
d2xR x; tð Þ

at lag t namely,

CAA0 s; tð Þ ¼ R0
A tð ÞR0

A0 t þ tð Þ
	 


where A, A0 are two L � L boxes whose centers are
separated by s and the prime on the rain rate variables
denotes deviation from the mean, as in equation (2). Starting
from the formula

CAA0 s; tð Þ ¼ 1

A2

Z
A
d2x

Z
A0
d2x0 c sþ x0 � x; tð Þ ð16Þ

the spectral model yields at zero lag the expression

CAA0 s; 0ð Þ ¼ g0

Z 1

�1

Z 1

�1

dx1 dx2 1� x1j jð Þ

� 1� x2j jð Þ � Cn Xþ s

L

��� ��� L
L0

� 
: ð17Þ

See Appendix A in BK96 for details of the derivation. Upon
setting s = 0 in equation (17), the variance of the area-
averaged rain rate in a grid box of area A = L2 is given by

s2A � s2 Lð Þ ¼ 4g0G n; L=L0ð Þ; ð18Þ

where G(n; z) is the double integral

G n; zð Þ ¼
Z 1

0

Z 1

0

dx1 dx2 1� x1ð Þ 1� x2ð Þ � Cn z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q� 
:

ð19Þ

[17] The power law singularity of the spatial covariance
of the point rain rate as a function of separation leads to a
simple scaling behavior of the statistics of area averaged
rain with the size of the area. Using the first two terms of the
expansion (14) in equation (19), which dominate as long as
�1 < n < 0, we have

G n; zð Þ � 1

8
� � nj jð Þ þ 1

2
� nj jð ÞH nð Þ z

2

� ��2 nj j
; ð20Þ

where H(n) denotes the integral

H nð Þ ¼
Z 1

0

Z 1

0

dx1 dx2 1� x1ð Þ 1� x2ð Þ x21 þ x22
� �n

: ð21Þ

Hence, for small L (more precisely L  L0), s
2(L) can be

expressed in the form

s2 Lð Þ � a0 þ b0L
�2 nj j; ð22Þ

where a0 and b0 are constants given by

a0 ¼
1

2
g0� � nj jð Þ; ð23Þ

b0 ¼ 2g0� nj jð ÞH nð Þ 2L0ð Þ2 nj j: ð24Þ
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Thus the model predicts that as L ! 0, the variance of area-
averaged rain rate s2(L) exhibits a power law singularity:

s2 Lð Þ � L�2 nj j:

2.1.4. Correlation Length and Time Scales
[18] The lagged correlation function

�AA0 s; tð Þ ¼ CAA0 s; tð Þ
s2A

ð25Þ

is a rapidly decreasing function of the separation s. The
model correlation function is markedly nonexponential. Its
fall-off rate is conveniently characterized by the ‘‘integral
correlation length’’ �int(L) [which would be the (1/e)-
folding distance for an exponentially decaying correlation
function] defined in the isotropic case through the relation

�2
int Lð Þ ¼

Z 1

0

ds s�AA0 s; t ¼ 0ð Þ: ð26Þ

It is related to the model spectrum through

�2
int Lð Þ ¼ 1

s2 Lð Þ c k ¼ 0; t ¼ 0ð Þ; ð27Þ

which upon using equation (18) reduces to

�2
int Lð Þ ¼ 1

4
� 1þ nð ÞL20=G n; L=L0ð Þ: ð28Þ

From equation (20) it then follows that �int(L) vanishes as
Ljnj as L ! 0.
[19] The case n = �1 presents a particularly simple and

analytically tractable special case of our spectral model. In
this case the spatial covariance of the point rain rate field
satisfies c(R, 0) / d(R). As a consequence, the correlation
between the rain rates in disjoint grid boxes vanish. The
integral correlation length �int(L) is simply equal to the box
size L and the variance of area-averaged rain rate s2(L) is
proportional to 1/L2.
[20] We can also define an integral autocorrelation time

tint(L) (which would be the 1/e-folding time for an expo-
nentially decreasing autocorrelation function) through the
formula

tint Lð Þ ¼
Z 1

0

dt�AA s ¼ 0; tð Þ: ð29Þ

It can be expressed in terms of the Fourier transform ~CA(w)
of the lagged autocovariance function CAA(s = 0, t) as

tint Lð Þ ¼
ffiffiffi
p
2

r
~CA w ¼ 0ð Þ

s2A
: ð30Þ

Evaluation of ~CA(0) (see Appendix A) yields

tint Lð Þ ¼ t0
� 1þ nð Þ
� 2þ 2nð Þ

G 1þ 2n; L=L0ð Þ
G n; L=L0ð Þ : ð31Þ

The values of n that best describe rain data in fact appear
to lie in the narrower range �1/2 < n < 0 (rather than the
range �1 < n < 0 considered above). The numerator of
equation (31) is then finite and consequently the model
predicts that tint(L) ! 0 as L2jnj in the linit L ! 0. In other
words, the timescale for fluctuations of average rain rate in a
box of area L2 gets smaller with decreasing box size.

2.2. Extension to Other Rain Statistics

[21] The spectral model presented above makes a number
of predictions about the change of rain statistics with scale.
With a few additional assumptions these predictions can be
shown to have interesting consequences for the asymptotic
behavior of the ‘‘conditional’’ statistics of rain as well. We
now turn to a brief description of these statistics.
[22] Consider remote sensing measurements of precipita-

tion over a given area and time period and the resulting rain
maps gridded on an L � L square grid. The ensemble mean
rain rate hRi is estimated as the average of all the data
within the data set, and is independent of the resolution
scale L. However, other statistical properties of the field,
such as the fraction of grid boxes containing nonzero rain
(‘‘the rainy area fraction’’) p(L) and the variance of the grid-
box-averaged rain rate s2(L), already considered, depend
nontrivially on L. The quantity p(L) representing the prob-
ability of nonzero rain in a grid box is a measure of the
spatial intermittency of rain at the scale L. Two other related
statistics are the mean rc(L) and the variance sc

2(L) of the
grid-box-averaged rain rate conditional on the box contain-
ing nonzero rain. These are related (see, e.g., BKK,
Appendix A) through

Rh i ¼ p Lð Þrc Lð Þ; ð32Þ

s2 Lð Þ ¼ p Lð Þ½s2c Lð Þ þ rc Lð Þ2� � Rh i2: ð33Þ

It is convenient to define the dimensionless ratio

m � m Lð Þ ¼ sc Lð Þ=rc Lð Þ: ð34Þ

Using equation (32), equation (33) can then be written as

1þ s2 Lð Þ
Rh i2

¼ 1þ m2

p Lð Þ : ð35Þ

[23] On the basis of analysis of rain gauge data from
Darwin, Australia and Melbourne, Florida and radar data
from GATE, Short et al. [1993] have suggested that m is
relatively constant over a range of length scales, averag-
ing times, types of data (radar or rain gauge) and rain
climates. In particular, m is insensitive to the averaging
length scale L. This was also found by BKK for SSM/I
rain data.
[24] If the quantity m(L) remains finite as L ! 0, then

equation (35) together with the asymptotic behavior (22)
predicts that p(L) would vanish as L2jnj in this limit. The
limiting behavior p(L) ! 0 as L ! 0 in turn implies that the
instantaneous point rain rate field R(x, t) vanishes almost
everywhere, i.e., everywhere except a set of measure zero -
a familiar property of spatial fractals. We shall return to this
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in greater detail in section 4 when we present the results of
our data analysis.

3. Testing the Model Predictions With
Ground-Based Radar Data

3.1. TOGA-COARE Data Set

[25] The radar data we use to test the spectral model
described above were collected during TOGA-COARE
[Webster and Lukas, 1992] carried out in the western
Pacific equatorial warm pool during the period November
1992 to February 1993. The measurements were made
with a pair of calibrated Doppler radars (labeled TOGA
and MIT) on board two research ships located near the
center of the intensive flux array (IFA), a region in the
shape of a quadrilateral, roughly centered at 2
S, 156
E.
Reliable rain rate estimates were provided out to a
distance 145 km from each radar. The fields of view
(FOVs) of the two radars overlapped substantially when
they were both operating. The measured radar reflectan-
ces Z were converted into average surface rain rates on a
2 km spatial grid using an empirical Z-R relation. The
data set is described by Short et al. [1997]. The total
101-day period of observation was divided into three
‘‘monthly’’ cruises covering the periods 11 November to
10 December 1992, 15 December 1992 to 18 January
1993, and 23 January to 23 February 1993 designated
respectively as cruises 1, 2, and 3. Rain maps were
available roughly at intervals of ten minutes with occa-
sional long gaps during which data from one or both of
the radars were missing.

3.2. Statistical Analysis of the Data

[26] The gridded data set obtained from the TOGA-
COARE observations yields estimates of the various area-
averaged rain statistics introduced previously, allowing one
to test the model predictions. We now briefly describe how
these statistics are obtained from the data.
[27] The statistics are derived using rain estimates from

square areas 128 � 128 km2 centered at the location of each
of the two ships. The locations of the areas changed slowly
with time because of the slight drift of the ships during the
monthlong experiments. However, the effect of this on the
statistics, if any, is expected to be negligible. Each area is
subdivided into boxes L � L in size, with L = 2n km (n = 1,
2, . . ., 7), and the quantities hRi, s2(L), p(L), rc(L) and sc(L)
defined in the previous section are computed for each L
from the data. Only those boxes in a rain map were used for
which at least 95% of the box had valid data. This was
necessary since the radar images frequently had data miss-
ing along a radial line emanating from the center of the
circular FOV where the radar was located. These dropouts
affected the grid boxes located close to the origin through
which the radial line passed, especially at the smaller grid
length scales L = 2, 4, 8 and 16 km.
[28] For comparison purposes, we also computed the

same spatial statistics for the GATE phase I (1716 images)
and phase II (1512 images) data from the 280 km box
centered at the location of the ship. For GATE data the basic
grid size is 4 km.
[29] We determined the integral correlation time tint(L)

for each L as follows. Mean rain rate time series were
constructed for each L � L box within the selected areas for

the three cruises. Again only boxes with at least 95% of the
area containing data were included in the time series in
order to contend with the data gaps mentioned above. The
lagged autocovariance function CAA(0, t) averaged over all
boxes in the chosen areas was computed for each L at lags t
of multiples of 10 min.
[30] As an example, the lagged autocorrelation function

�L tð Þ � �AA 0; tð Þ

for L = 128 km for the six data sets are shown in Figure 1.
For each data set a numerical estimate of the time integral
tint(L) =

R1
0

�L(t)dt was obtained. This is discussed in
more detail later.
[31] The next subsection describes how the parameters

g0, L0, n and t0 are determined by fitting the data to the
statistics of gridded averages predicted by the model.

3.3. Estimation of the Model Parameters

[32] The parameters g0, L0 and n determine the spatial
statistics at zero lag. They are estimated by fitting the
variance s2(L) to the asymptotic formula (22) valid for
small L. The fit determines the exponent n and the coef-
ficients a0 and b0. Equation (23) determines the parameter
g0 and equation (24) then determines L0. The procedure was
carried out for the TOGA-COARE as well as both GATE
phase I and phase II data sets.
[33] Once n and L0 are determined, an estimate of the

parameter t0 for each data set can be obtained by averaging
over the values individually computed by solving (31) for
t0 using the values of tint(L) for various box sizes L.
However, since there is only a finite length T of data
available, instead of tint(L) one can only obtain an estimate

t̂int L; t0; tmaxð Þ ¼
Z tmax

0

�L tð Þdt; ð36Þ

Figure 1. Plot of lagged autocorrelation functions �L(t)
for L = 128 km square boxes centered at the location of the
TOGA and MIT radars for each of the three cruises.
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with a finite cutoff tmax < T imposed on (29). In principle,
we could solve (36) for t0 using the model from the data-
derived value of t̂int for a chosen cutoff tmax. In practice
this is difficult, since the model-predicted t0-dependence of
the function t̂int(L, t0; tmax) is nonlinear and complex to
calculate. Instead, we adopt an iterative method described
next.
[34] There is an uncertainty inherent in choosing tmax in

order to get the ‘‘best estimate’’ of t0. It arises because the
tail of the autocorrelation function suffers from a combined
effect of statistical noise and possible secular variations of
the rainfall pattern over longer timescales not represented in
our spectral model. The choice of the cutoff is guided by
several considerations. On the one hand, tmax should be
large enough so that the contribution of the tail in the
integral (29) is small. Some guidance on an acceptable
value of tmax is provided by the model’s prediction of this
contribution. However, the empirical lagged autocorrelation
suffers from sampling error because it is obtained from a
finite time series of length T � 30 days. The cutoff tmax

must therefore satisfy the condition tmax  T. Also tmax

should be chosen to be small enough so that the effect of
slow secular modulations of the lagged autocorrelation
function caused by physical phenomena such as a diurnal
cycle or various atmospheric waves, which are not
accounted for in our simple model spectrum, is minimized.
Evidence of such longer timescales was most obvious in the
cruise 2 MIT and the cruise 3 TOGA radar data sets. These
modulations can probably be attributed to various large
scale atmospheric waves known to influence rainfall in the
equatorial Pacific. We shall revisit some of these issues in
the next section. Keeping these factors in mind, we chose a
relatively small cutoff tmax = 12 hours with the implicit
assumption that the spectral model accurately describes the
observed correlations up to the lag t = tmax.
[35] Next, we turn to the problem of estimation of t0.

Using (36), equation (29) for the integral correlation time
tint(L) � tint(L, t0) can be expressed as the sum

tint L; t0ð Þ ¼ t̂int L; t0; tmaxð Þ þ
Z 1

tmax

�L tð Þdt ð37Þ

If the left-hand side of (37) were known, equation (31)
would immediately yield t0. However, while the first term
on the right-hand side of (37) is obtained from data, the
second term can be calculated from the model only when t0
is known. We therefore solve equation (37) iteratively: to
begin the process, we obtain a first guess for t0 by ignoring
the contribution of the integral; for all the following steps of
the iteration we evaluate the integral on the right-hand side
using the model �L(t) with the value of t0 obtained from
the previous step. For ease of computation, we replace the
square box by a circular disk of equal area. This
approximation proved to be accurate enough for our
purposes. Appendix B gives some details of the model
calculations for a circular area. In practice, for the TOGA-
COARE data, the correction to t0 due to the introduction of
a cutoff is of order 5%, and it was unnecessary to go beyond
the first iteration.
[36] The iterative method applied to GATE phase I data

with tmax chosen to be 18 h gives an estimate of t0 within

about 1% of what was reported in BK96 from a direct fit to
the lagged autocorrelation function.

4. Results and Discussion

[37] The full set of parameter values for which the model
best fits the TOGA-COARE data are given in Table 1, along
with the corresponding values for GATE phase I determined
in BK96 using a somewhat less exact and more arduous
trial-and-error curve fitting method instead of the analytical
method adopted here.

4.1. Model Parameters N, L0 and ;0

[38] Table 1 summarizes the TOGA-COARE model
parameters. We see that the values of the power law
exponent n range between about �0.21 to �0.34 indicating
a much stronger singular behavior than was found for the
GATE phase I data (n = �0.11). The characteristic time t0
lies in the range of roughly 4.5 to 8.2 hours, considerably
shorter than the GATE phase I value t0 � 13 hours. The
characteristic length L0 ranges between about 54 and 94 km
indicating a somewhat sharper fall-off of the spatial
correlations compared to GATE phase I for which L0 =
104 km. The results exhibiting the quality of the fit are
shown in Figure 2 for the TOGA and MIT radars. It is seen
that in most cases the fit is quite good up to grid size L =
64 km, beyond which the approximation on which
equation (22) is based is expected to break down. Our
results seem to be consistent with the model prediction that
the variance s2(L) has a power law behavior s2(L) � L�2jnj

as L ! 0. Robustness of the parameterization was checked
by comparing the variance of area-averaged rain rate (sA

2)th
predicted by the exact formula (18) for an area A = L2 with
L = 128 km against the observed variance (sA

2)obs for the
128 km box centered at the two ship locations. Table 2
shows the comparisons, which are quite good.
[39] For GATE data we find that for L between 4 km and

56 km, the variance s2(L) is quite accurately fitted (not
shown here) by the formulas

s2 Lð Þ ¼
17:3L�0:24 � 4:66 mm2h�2; phase I;

15:0L�0:38 � 1:92 mm2h�2; phase II:

8<
:

Equations (22)–(24) yield the parameter values

g0 ¼ 1:02 mm2h�2; n ¼ �0:12; L0 ¼ 93:8 km

Table 1. Parameter Values for Rain Rate Covariance Modela

Data Set g0, mm2 h�2 n L0, km t0, h hRi, mm h�1

GATE phase I 1.0 �0.11 104. 13.0 0.492
TOGA cruise 1 0.067 �0.335 94.06 6.8 0.139
MIT cruise 1 0.086 �0.297 73.89 5.8 0.134
TOGA cruise 2 0.616 �0.239 53.81 5.0 0.352
MIT cruise 2 0.206 �0.205 70.40 8.2 0.229
TOGA cruise 3 0.127 �0.290 61.04 5.2 0.155
MIT cruise 3 0.180 �0.259 64.94 4.5 0.200

aParameters for the model spectrum obtained from fits to radar data from
phase I of GATE and from the ships MIT and TOGA during the three
TOGA-COARE cruises. Average rain rate for each data set is given in the
last column.
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for phase I and

g0 ¼ 0:63 mm2h�2; n ¼ �0:19; L0 ¼ 82:7 km

for phase II. [The original GATE phase I parameters listed
in Table 1 lead to the asymptotic formula s2(L) =
16.80L�0.22 � 4.89 mm2h�2 (see BK96 Appendix A),
whose coefficients and the power law exponent are well
within the 95% confidence interval of the corresponding
quantities in the empirical least squares fit given above.]
[40] We also explored the dependence of the model

parameters on the mean rain rate hRi. While no systematic

dependence could be discerned for L0, t0 and n, the strength
parameter g0 was found to depend on hRi according to the
simple formula

g0 ¼ k Rh i2; ð38Þ

where k is a dimensionless constant. The fit in Figure 3,
which also includes points corresponding to GATE
phase I (hRi = 0.492 mm h�1) and GATE phase II
(hRi = 0.386 mm h�1), yields a value k � 4.33.

4.2. Model Parameter T0

[41] Next, we turn to a discussion of the dependence of
the integral correlation time tint(L) on the spatial averaging
scale L. The plots in Figure 4 show reasonable agreement
between the values of tint(L) determined from data and the
corresponding theoretical predictions computed for various
box sizes L using the model parameters. Linearity of the

Figure 2. Comparison between the observed variance of
area-averaged rain rate s2(L) for the TOGA-COAREdata and
the corresponding spectral model predictions for various box
sizes L ranging from 2 to 128 km using equations (22)–(24)
and the parameter values listed in Table 1.

Table 2. Comparison Between Theoretical and Observed Values

of sA
2 for L = 128 kma

Data Set (sA
2)th, mm2 h�2 (sA

2)obs, mm2 h�2

TOGA cruise 1 0.107 0.116
MIT cruise 1 0.093 0.105
TOGA cruise 2 0.399 0.371
MIT cruise 2 0.176 0.174
TOGA cruise 3 0.107 0.119
MIT cruise 3 0.155 0.169

aComparison between values of the variance of area-averaged rain rate sA
2

computed from the model using equation (18) and the parameters listed in
Table 1 for L = 128 km and from the data for two 128 km boxes centered at
each of the two ship locations.

Figure 3. Plot of the parameter g0 against the mean
rain rate hRi for the TOGA-COARE and GATE data sets.
The continuous curve shows the least squares fit to the
formula (38).
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log-log plot for small L confirms the power law dependence
tint(L) � (L/L0)

2jnj as L ! 0 expected from our model. In
BK96 it was found that the integral correlation time
estimates for the GATE phase I is described quite well by
the power law form tint(L) = 0.67 L0.49 h. Again the
exponent of the power law is rather different from the
expected value 0.22 obtained from the spectral model fit.
However, it was also found there that while the model
captures the overall decay of the autocorrelation function
�L(t), it substantially underestimates the correlation at
smaller lags, indicating a departure from the model
spectrum for a first order process. Indeed, it was shown
by Bell and Reid [1993] that this behavior could be
accounted for by going over to a second order model, which
of course introduces more adjustable parameters.

[42] A number of caveats in the estimates of t0 should be
pointed out. A fundamental uncertainty in the value of
tint(L) arises from the fact that it must be estimated from
a time series of finite length T which in our case is of order
30 days. It is known [Bell, 1980] that if the true
autocorrelation function of a normally distributed random
variable has an exponentially decaying form �L(t) =
exp(�t/tint) then the integral correlation t̂int, defined by
equation (35) with a finite cutoff tmax, has variance

s2 t̂int½ � ¼ 4 tmax=Tð Þt̂2int; ð39Þ

where it is assumed that tint(L)  tmax  T. A proof of
equation (39) is given in Appendix C. Thus, in order to
reduce the statistical uncertainty in the estimate, tmax should
be chosen to be as small as possible but large enough to
include the entire range over which �L(t) differs appreci-
ably from zero. In our case, if we choose tmax � 12 hours,
then it follows that the 2s uncertainty in the estimate of
tint(L) obtained from a single time series could, in fact, be
as large as 0.5 t̂int. It is to be noted that, strictly speaking,
this estimate holds only for a Gaussian random variable
undergoing a linear stochastic dynamical process with an
exponentially decaying autocorrelation function. However,
the probability distribution of rain rate variable is markedly
non-Gaussian and the autocorrelation possesses a much
more slowly decaying tail. These factors can lead to an
uncertainty larger than what is predicted by equation (39).
On the other hand, for the smaller grid boxes of size L =
2n km with n � 6, the actual uncertainty should be
considerably lower than the estimate (39) since the
autocovariances were obtained by averaging over the results
for the time series for the 47�n boxes. These time series are,
however, not completely independent of one another,
because of the spatial correlation of the rain rate in a box
with others in its vicinity, and an exact estimate of the
uncertainty would be difficult to obtain.

4.3. Conditional Statistics and the Spectral Model

[43] The spectral model described in section 2 allows one
to quantify how the statistics of area-averaged rain rate
depend on the averaging scale L. These statistical quantities,
such as the variance s2(L) and the integral correlation length
and time scales, pertain to variability of the rain field
including its zeroes, i.e., the region where it is not actually
raining. However, unlike most random variables in nature,
the instantaneous rain rate has a finite nonzero probability
of having the value zero, in accordance with common
experience - namely, that it is not raining in most places
most of the time. Mathematically this is expressed by the
property that the probability density function for the area-
averaged instantaneous rain rate RA(t) defined by (1) has a
d-function at zero followed by an (approximately lognor-
mal) continuum [Kedem et al., 1990]. The probability p(L)
for the value RA 6¼ 0 is expected to have nontrivial L-
dependence and is an important statistic of the gridded rain
field. As discussed in section 2, an additional property of
the conditional statistics of rain, namely the constancy of the
dimensionless ratio m, allows one to draw some inferences
about the asymptotic L-dependence of the function p(L). We
now turn to a discussion of this statistic for the TOGA-
COARE data set. It is, however, worth pointing out that in

Figure 4. Plot of the integral correlation time t̂int
evaluated with a finite cutoff tmax for the three TOGA
and MIT cruises and various box sizes L ranging from 2 to
128 km. The curves represent interpolation of the values
computed from the spectral model.

KUNDU AND BELL: A STOCHASTIC MODEL OF RAINFALL SWC 1 - 9



doing so we are exploring territory that lies outside the
scope of the original spectral model.
[44] Our data set provides a simple way to test the

constancy of the ratio m defined by (34) as originally
suggested by Short et al. [1993]. Equation (35) implies
that the plot of 1 + s2(L)/hRi2 versus 1/p(L) would be a
straight line through the origin if m is a constant independent
of L. A scatterplot of all the data points from the six data
sets (2 ships, 3 cruises) and each value of L is shown in
Figure 5. The linear fit seems satisfactory; the slope yields a
mean value of m � 3.03 collectively for all the six data sets.
However, there is a pronounced systematic deviation from
the linear fit in the ‘‘large’’ p(L) regime [i.e., p(L) ’ 1],
which corresponds to large L. One can also evaluate m
separately for each data set. The individual values were
found to be within a narrow range, with a low value of 2.63
for MIT cruise 2 and a high value of 3.39 for TOGA
cruise 2. As noted in section 2, constancy of m (or more
generally, finiteness of m as L ! 0) together with (22) leads
to another important conclusion - a power law scaling
behavior of the rain probability p(L) at small L. Combining
the formulas (22)–(24) and (38) with equation (35) we infer
that for L  L0,

1=p Lð Þ / 1þ b L=2L0ð Þ�2 nj j; ð40Þ

where

b ¼ 2k� nj jð ÞH nð Þ
1þ 1

2
k� � nj jð Þ

; ð41Þ

H(n) is given by equation (21) and k is the dimensionless
number introduced in (38). This immediately implies the
power law behavior

p Lð Þ � L

L0

� 2 nj j
ð42Þ

as L ! 0, which can be independently checked from the
data. Fits to a power law p(L) / Lh for each of the six data
sets are shown in Figure 6. A straight line fit on a plot of log
p(L) versus log L provides evidence of a power law
behavior between L = 2 km and 64 km. In Table 3 the

Figure 5. Scatterplot of 1 + s2(L)/hRi2 versus 1/p(L) for
all the six TOGA-COARE data sets for averaging length
scales L ranging from 2 to 128 km (6 � 7 = 42 data points).
Least squares fit to a straight line through the origin yields
the slope 1 + m2 � 10.2, i.e., m � 3.03 for the entire TOGA-
COARE data set.

Figure 6. Power law fit to the fractional rainy area p(L) for
the three TOGA and MIT cruises and various box sizes
L ranging from 2 to 64 km. The exponents are given in
Table 3.
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observed exponent hobs is compared against the theoreti-
cally expected value hth = 2jnj for each data set. We see that,
although there is generally speaking a close agreement
between the two sets of values, for four of the six data sets
hobs is somewhat larger than hth contrary to what one would
infer from equation (35). However, it should be noted that
according to the model the power law dependence on L
becomes accurate only in the scaling regime L  L0.
Consequently, it is more appropriate to compare hth with the
power law exponent determined from p(L) in the small L
limit. Indeed, a closer inspection of the graphs of p(L)
shows a slight but systematic deviation at small L from the
power law obtained by least squares fit, indicating a smaller
slope there. In Table 3 we have also included an estimated
exponent hobs

0 evaluated from the slope of a linear
interpolation between L = 2 km and 8 km, which clearly
improves agreement between the model and observation.
One can also see in retrospect that the constancy of m which
gave rise to the power law scaling behavior of p(L), itself
becomes progressively more accurate in the limit of small L.
[45] For the GATE data we find that within the range of L

between 4 km and 56 km the rain probability p(L) (L in km)
is represented quite well by the power law formulas

p Lð Þ ¼
0:122 L=4ð Þ0:61 phase I

0:098 L=4ð Þ0:68 phase II

;

8<
:

which are consistent with the expected behavior p(L) ! 0
as L ! 0. (See also Ha et al. [2002], who use a linear
regression fit to describe p(L) as function of L.) The
exponents are, however, in each case quite different from
the values suggested by the spectral model fit. We also find
that for GATE, the quantity m(L) actually depends
significantly on L. In fact, m(L) changes from about 1.77
at L = 4 km to about 2.16 at L = 56 km for phase I and
from about 1.89 at L = 4 km to about 2.22 at L = 56 km for
phase II.
[46] As in the TOGA-COARE case, the goodness of a

simple power law fit is probably somewhat fortuitous for
GATE as well, since deviations from a power law behavior
are to be expected on the basis of the model because of the
presence of ‘‘subdominant’’ terms in 1/p(L) such as the

constant term in (40) or other possible L-dependent terms
arising from a weak L-dependence of m(L). Upon attempting
to fit the data for p(L) to a form like (40) we find that the
best fit values of the exponent h are slightly smaller than the
values given above. However, they still differ substantially
from the model-inspired value 2jnj. We have been unable to
fully reconcile the apparent discrepancy between the two
sets of exponents along the lines discussed above in
connection with the TOGA-COARE data.
[47] One particular aspect that we did not address in this

paper is the dependence of p(L) and other rain statistics on
the value of the rain threshold, i.e., the smallest value of rain
rate that is experimentally measurable. This is an important
issue, since different instruments have different thresholds
and hence threshold dependence can greatly complicate
intercomparison efforts for rain rate averages, especially
conditional averages.

4.4. Discussion

[48] From Table 1 it is evident that the model parameters
vary considerably among the data sets. These variations are
almost certainly due in part to real secular variations in the
rainfall pattern. As discussed by Short et al. [1997], the
TOGA-COARE region of the tropical Western Pacific
experiences planetary scale equatorial waves including an
annual cycle, intraseasonal oscillations such as Madden-
Julian oscillations [Lau and Chan, 1985; Madden, 1986;
Nakazawa, 1995] and westerly wind bursts related to El
Niño-Southern Oscillation (ENSO) events. The first half of
cruise 2 had an intensely active period associated with
intraseasonal oscillation accompanied by passage of cloud
superclusters and heavy rainfall. The rainfall time series
during this period also shows a quasi 2-day oscillation of
the type described by Takayabu [1994] and Takayabu et al.
[1996]. They attribute this oscillation to westward-propa-
gating inertio-gravity waves. By contrast, the spatial rainfall
pattern during much of cruise 1 appears to be much more
homogeneous and isotropic, characteristic of small-scale
convective systems. For a more detailed discussion, see
Short et al. [1997].

5. Conclusion

[49] In this paper we have presented a model of second
moment statistics of rainfall based on a linear stochastic
dynamical equation. The model makes definite predictions
about the statistical behavior of area-averaged rain rate in
both space and time. In particular, the model predicts simple
power law dependence of the rain statistics on the averaging
area as the area tends to zero, perhaps reflecting a fractal
nature of the rain field at smaller spatial scales. These
predictions are tested with a radar-derived gridded tropical
oceanic precipitation data set and the model is shown to
describe the data quite well within the intrinsic limitations
of the model assumption of statistical homogeneity, isotropy
and stationarity. In particular, the intimate relationship
between the dependence of the correlation length and time
scales of the rain field on the spatial smoothing predicted by
the model is in accordance with data. It should, however, be
emphasized that in extrapolating the model-derived limiting
behavior of the rain statistics deduced from a data set on a
finite grid as the averaging scale goes to zero, we are
effectively probing the ‘‘subgrid’’ structure of the rain field,

Table 3. Comparison Between Theoretical and Observed Values

of the Exponent ha

Data Set hobs hobs
0 hth = 2jnj

TOGA cruise 1 0.760 ± 0.026 0.571 0.669 ± 0.025
MIT cruise 1 0.728 ± 0.025 0.618 0.595 ± 0.047
TOGA cruise 2 0.464 ± 0.011 0.382 0.477 ± 0.057
MIT cruise 2 0.540 ± 0.014 0.417 0.409 ± 0.054
TOGA cruise 3 0.582 ± 0.015 0.448 0.581 ± 0.056
MIT cruise 3 0.573 ± 0.015 0.448 0.519 ± 0.063

aComparison between value of the power law index h defined by the
stipulated behavior p(L) /Lh of the fractional rainy area p(L) as function of
the averaging length scale L determined from the data and the value
predicted by the model. The second column gives the ‘‘mean’’ exponent
obtained by an overall least squares fit, while the third column gives the
exponent determined from the slope at small L. In the last column,
specifying the ‘‘theoretical’’ value hth = 2jnj determined from the s2(L)
versus L plots (Figure 2 via the fit to equation (22)), we also include the
error bars not reported in Table 1.
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i.e., the structure on scales finer than allowed by the
instrumental resolution.
[50] To conclude, we briefly mention some directions for

future work. Like the spatially averaged rain rate, the
spectral model also predicts relationships among the power
law scaling exponents for the time-averaged rain rate as
well. It would be interesting to see how well the model is
capable of describing statistics of rain gauge data averaged
over various time intervals. In a sequel to this paper, we will
investigate the statistical properties of time-averaged local
rain rates as measured by rain gauges using our model
spectrum. Our model provides a convenient framework for
addressing intercomparison problems that involve averaging
the precipitation field over many different length and time
scales. Recently the model has been used to investigate the
problem of validation of satellite measurements of rainfall
using rain gauge measurements on the ground [Bell and
Kundu, 2003]. Finally, simple power law behavior of the
various statistics of rain fields with respect to rescaling of
the spatial averaging grid at small scales suggests a model-
independent explanation based entirely on the scaling
properties of the various statistical quantities involved. We
plan to explore this possibility in future publications.

Appendix A: Analytic Formula for Tint(L)

[51] In this appendix we give a derivation of the formula
(31) for the integral correlation time tint(L) and describe its
limiting behavior as L ! 0.
[52] Equation (18) for the variance of the area-averaged

rain rate in a grid box A of area A = L2 reads

s2A ¼ 4g0G n; L=L0ð Þ;

where G(n; z) is defined as the double integral (19). On the
other hand, the lagged autocovariance function CAA(0, t) is
given by (BK96, Appendix A)

CAA 0; tð Þ ¼ 2

p

Z 1

0

Z 1

0

dk1dk2 G2 k1L

2

� 
G2 k2L

2

� 
c k; tð Þ

where G2(x) = sin2x/x2 is the Bartlett filter function and c(k, t)
is given by equation (9). Setting t = 0, we have an alternative
integral representation of sA

2:

s2A ¼
ffiffiffi
2
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Z 1
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Z 1

0
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where in the last step we have made use of the explicit form
of tk given by (6). Comparing the two representations of sA

2

we obtain the useful integral identityZ 1

0

Z 1

0
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2

� �
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[53] Next, consider the Fourier transform of CAA(0, t):

~CA wð Þ ¼ 2

p

Z 1

0

Z 1

0

dk1dk2 G2 k1L

2

� 
G2 k2L

2

� 
~c k;wð Þ:

Using the explicit form of the model spectrum (7) at w = 0,
we get

~CA w ¼ 0ð Þ ¼ 2

p
F0

Z 1

0

Z 1

0

dk1dk2 G2 k1L

2

� 
G2 k2L

2

� 
t2k

¼ 2

p
F0t20

Z 1

0

Z 1

0

dk1dk2 G2 k1L=2ð ÞG2 k2L=2ð Þ
1þ k21 þ k22

� �
L20

� �2 1þnð Þ :

In view of the identity (A2) this reduces to

~CA w ¼ 0ð Þ ¼ 4

ffiffiffi
2

p

r
g0t0

� 1þ nð Þ
� 2þ 2nð ÞG 1þ 2n; L=L0ð Þ; ðA3Þ

where we have also used (12) to substitute for F0 in terms of
the standard model parameters g0, L0 and n. Using
equations (18), (A3) and (30) we obtain equation (31).
The integrals were numerically evaluated with the help of
Mathematica [see Wolfram, 1999].
[54] Finally, we examine the limiting behavior of

tint(L) as L ! 0. We note that for the range of values of
the exponent n of interest to us, �1/2 < n < 0, (or 0 < 1 +
2n < 1), equation (20) yields the asymptotic behavior

G n; zð Þ ¼ 1

2
� nj jð ÞH nð Þ z

2

� ��2 nj j
þO 1ð Þ

and

G 1þ 2n; zð Þ ¼ 1

8
� 1þ 2nð Þ þ O z2 1þ2nð Þ

� �
;

as z ! 0. From equation (31) it follows that tint(L) vanishes
for L ! 0 as

tint Lð Þ � t0
4

� 1þ nð Þ
1þ 2nð Þ� nj jð ÞH nð Þ

L

2L0

� 2 nj j
: ðA4Þ

In this limit the product tint(L) s
2(L) approaches a constant:

lim
L!0

tint Lð Þs2 Lð Þ ’ g0t0
2

� 1þ nð Þ
1þ 2n

: ðA5Þ

Appendix B: Effect of Finite Cutoff in the
Evaluation of the Integral Correlation Time

[55] In this appendix we obtain an expression for the
fractional error in the integral correlation time t̂int predicted
by the spectral model for a circular disk of radius a as a
function of the lag tmax at which numerical integration of
the correlation function is stopped. The derivation is a
simple extension of the calculations described by Bell and
Kundu [2003].
[56] The covariance of instantaneous area-averaged rain

rate averaged over a circular disk of radius a separated by a
time interval t is

CAA 0; tð Þ ¼ 1

A2

Z
A

d2x

Z
A

d2yc x� y; tð Þ

¼ 1

A2

Z
A

d2x

Z
A

d2y 2pð Þ�1

Z
d2keik� x�yð Þc k; tð Þ:
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[57] The areal integrals can be done in a closed form.
After some algebra using equation (9), one obtains

CAA 0; tð Þ ¼ 4g0� 1þ nð Þ
a2

Z 1

0

dk
k

J 21 kað Þ
v kð Þ e� t=t0j jv kð Þ: ðB1Þ

where a = a/L0,

v kð Þ ¼ 1þ k2
� �1þn

; ðB2Þ

and J1(x) is the Bessel function of order 1. For a circular
disk of area L2 the radius is a = L/

ffiffiffi
p

p
.

[58] Using (B1) one can easily show that

tint ¼

Z 1

0

dt CAA 0; tð Þ

s2A
¼ t0

Z 1

0

dk
k
J 21 kað Þ
v2 kð ÞZ 1

0

dk
k
J 21 kað Þ
v kð Þ

2
6664

3
7775: ðB3Þ

If we estimate tint by introducing a finite upper cutoff in the
t-integral, then the fractional error e(t0; tmax) defined as

� t0; tmaxð Þ ¼ tint � t̂int
tint

: ðB4Þ

is given by the formula

� t0; tmaxð Þ ¼

R1
0

dk
k

J 21 kað Þ
v2 kð Þ exp � tmax=t0ð Þv kð Þ½ �

R1
0

dk
k
J 21 kað Þ
v2 kð Þ

: ðB5Þ

Equation (B5) is numerically evaluated using Mathematica
[Wolfram, 1999] to estimate the correction to the integral
correlation time discussed in section 3.3. A plot of e against
the ratio tmax/t0 is shown in Figure B1 for typical parameter
values.

Appendix C: Estimate of Random Error for the
Integral Correlation Time of an AR(1) Process

[59] In this appendix we obtain a simple estimate of the
random error of the integral correlation time of a normally
distributed random variable undergoing a stationary, linear,
first order autoregressive [AR(1)] process, evaluated from a
single time series of finite length T.
[60] Consider the time series {x(t)} of length T generated

by a single realization of a random variable X(t) undergoing
a linear stationary AR(1) process for which the lagged
covariance function

g tð Þ ¼ X 0 t þ tð ÞX 0 tð Þh i ðC1Þ

has the simple exponential form

g tð Þ ¼ s2e� tj j=tA : ðC2Þ

Its estimate, obtained from a finite time series, namely,

c tð Þ ¼ 1

T

Z T

0

dtx0 t þ tð Þx0 tð Þ

can be thought of as a random variable

Y tð Þ ¼ 1

T

Z T

0

dtX 0 t þ tð ÞX 0 tð Þ ðC3Þ

depending on the realization of X(t). We are interested in
estimating the random error for the integral correlation time
represented by the random variable

Tint ¼
Z tmax

0

Z tð Þdt ðC4Þ

where the variable Z(t) = Y(t)/Y(0) represents the lagged
correlation function. The desired error estimate is simply the
square root of the variance

s2 Tint½ � ¼ T 2
int

	 

� Tinth i2;

which can then be expressed in the form

s2 Tint½ � ¼
Z tmax

0

Z tmax

0

dt1dt2 Z 0 t1ð ÞZ 0 t2ð Þh i: ðC5Þ

[61] For simplicity of notation we write

Y tð Þ ¼ A; Y 0ð Þ ¼ B:

Figure B1. Plot of the fractional error (B5) as function of
the ratio tmax/t0 computed for the typical spectral model
parameters n = �0.25 and L0 = 70 km and three values of
disk radius a. The curves marked (1), (2), and (3) represent
the results for the radii a = 1 km, 10 km, and 100 km. The
corresponding true integral correlation times are 0.052t0,
0.19t0 and 0.65t0, respectively.
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These random variables can each be expressed as the sum of
respective mean values and fluctuations:

A ¼ aþ a; B ¼ bþ b;

where

a � Ah i ¼ g tð Þ; b � Bh i ¼ s2:

Up to second order in the fluctuations one finds

Z 0 t1ð ÞZ 0 t2ð Þh i � 1

b2
a1a2 þ

b2

b2
a1a2

� �
; ðC6Þ

where the subscripts 1 and 2 indicate evaluation at lags t1
and t2 respectively. Equation (C6) can be recast in a much
simpler form if X(t) (and therefore X 0(t)) is a Gaussian
random variable. Using the relation [see, e.g., Anderson,
1958]

X 0 t1ð ÞX 0 t2ð ÞX 0 t3ð ÞX 0 t4ð Þh i ¼ X 0 t1ð ÞX 0 t2ð Þh i X 0 t3ð ÞX 0 t4ð Þh i
þ X 0 t1ð ÞX 0 t3ð Þh i X 0 t2ð ÞX 0 t4ð Þh i
þ X 0 t1ð ÞX 0 t4ð Þh i X 0 t2ð ÞX 0 t3ð Þh i;

which expresses the fourth moment of such a variable in
terms of products of the second moment, the quantity

a1a2h i ¼ Y 0 t1ð ÞY 0 t2ð Þh i ðC7Þ

can be reduced to the form

a1a2h i ¼ 1

T 2

Z T

0

Z T

0

dt1dt2 g t1 � t2 þ t1 � t2ð Þ½ g t1 � t2ð Þ

þ g t1 � t2 þ t1ð ÞÞg t1 � t2 � t2ð Þ�: ðC8Þ

The double integrals can be simplified with the help of the
integral identity

Z T

0

Z T

0

dt1dt2 f t1 � t2ð Þ ¼
Z T

�T

dt T � tj jð Þf tð Þ; ðC9Þ

which, for a function f (t) decaying exponentially as t!1,
in the approximation T � tA further simplifies to

Z T

0

Z T

0

dt1dt2 f t1 � t2ð Þ � T

Z 1

�1
dt0 f t0ð Þ:

[62] Making use of the explicit form of the lagged
covariance function g(t) given by equation (C2) and
carrying out the remaining integration, we get

a1a2h i � s4

T
t1 � t2j j þ tAð Þe� t1�t2j j=tA

h

þ t1 þ t2 þ tAð Þe� t1þt2ð Þ=tA
i
: ðC10Þ

Setting t1 = t2 = 0, we also get

b2
	 


� 2s4tA
T

: ðC11Þ

With equations (C6), (C10) and (C11), equation (C5) can be
drastically simplified using the identity (C9) again with tmax

instead of T. In the approximation tmax � t0, we finally
obtain the desired formula

s2 Tint½ � � 4tmaxt2A
T

1þ O tA=tmaxð Þ½ �; ðC12Þ

which is equation (39), since tint = tA for the exponentially
decaying correlation (C2).
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